Lefty-Dependent Inhibition of Nodal- and Wnt-Responsive Organizer Gene Expression Is Essential for Normal Gastrulation

نویسندگان

  • William W. Branford
  • H.Joseph Yost
چکیده

During gastrulation, diffusible "organizer" signals, including members of the TGFbeta Nodal subfamily, pattern dorsal mesoderm and the embryonic axes. Simultaneously, negative regulators of these signals, including the Nodal inhibitor Lefty, an atypical TGFbeta factor, are induced by Nodal. This suggests that Lefty-dependent modulation of organizer signaling might regulate dorsal mesoderm patterning and axial morphogenesis. Here, Xenopus Lefty (Xlefty) function was blocked by injection of anti-Xlefty morpholino oligonucleotides (MO). Xlefty-deficient embryos underwent exogastrulation, an aberrant morphogenetic process not predicted from deregulation of the Nodal pathway alone. In the absence of Xlefty, both Nodal- (Xnr2, gsc, cer, Xbra) and Wnt-responsive (gsc, Xnr3) organizer gene expression expanded away from the dorsal blastopore lip. Conversely, coexpression of Xlefty with Nodal or Wnt reduced the ectopic expression of Nodal- (Xbra) and Wnt-responsive (Xnr3) genes in a dose-dependent manner. Furthermore, Xlefty expression in the ectodermal animal pole inhibited endogenous Nodal- and Wnt-responsive gene expression in distant mesoderm cells, indicating that Xlefty inhibition can spread from its source. We hypothesize that Xlefty negatively regulates the spatial extent of Nodal- and Wnt-responsive gene expression in the organizer and that this Xlefty-dependent inhibition is essential for normal organizer patterning and gastrulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TGF-β signals from the endoderm induce overlying marginal cells to adopt mesodermal fates while wnt pathway signaling promotes organizer formation. Mesoderm is then patterned along the dorsal-ventral axis in response to a gradient of BMP

The vertebrate midline is essential for generating dorsoventral and anteroposterior pattern, and regulating left-right asymmetry. Initial embryonic patterning is established by localized maternal signals and inductive cell interactions. These signals establish organizing centers that coordinate the body plan. Spemann and Mangold (1924) identified a population of cells from the dorsal margin of ...

متن کامل

Identification of a phylogenetically conserved activin-responsive enhancer in the Zic3 gene

Multiple signaling pathways are involved in the induction of the organizer, a major center controlling vertebrate body plan formation. To study these signals, we have focused on the regulation of the Zic3 gene, which codes for a zinc finger transcription factor expressed in the organizer region at the beginning of gastrulation. We searched for DNA regulatory elements in the Zic3 promoter by tes...

متن کامل

Nodal signaling patterns the organizer.

Spemann's organizer plays an essential role in patterning the vertebrate embryo. During gastrulation, organizer cells involute and form the prechordal plate anteriorly and the notochord more posteriorly. The fate mapping and gene expression analyses in zebrafish presented in this study reveal that this anteroposterior polarity is already initiated in the organizer before gastrulation. Prechorda...

متن کامل

Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two β-catenins in the zebrafish embryo

Using embryos transgenic for the TOP-GFP reporter, we show that the two zebrafish beta-catenins have different roles in the organizer and germ-ring regions of the embryo. beta-Catenin-activated transcription in the prospective organizer region specifically requires beta-catenin-2, whereas the ventrolateral domain of activated transcription is abolished only when both beta-catenins are inhibited...

متن کامل

Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development

Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002